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—>dsbond is small. The strain enexrgy dissipated as a result of
this detachment, and hence the mechanical hysteresis, are also
evaluated. When a reasonable value is adopted for Young's
modulus (E)of the elastomeric matrix, it is found that detach-
ment from small inclusions, of less than about 0.1 mm in diameter,
will not occur, even when the level of adhesion is relatively
low. 1Instead, rupture of the matrix near the inclusion becomes
the preferred mode of failure at an applied stress given approx-
\e imately ggz., For still smaller inclusions, of less than

t in diameter, rupture of the matrix becomes increas-
ingly difficult, due to the increasing importance of a surface
energy term. These considerations account for the general fea-
tures of reinforcement of clastmrl.m%m -
become effectively bonded to the matrix, whereas larger in-
clusions induce fracture near them, or become detached from the
matrix, at applied stresses that can be calculated from the
particle diameter, the strength of adhesion, and the elasticity
of the matrix material.
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pDetachment of an Elastic Matrix
from a Rigid Spherical Inclusion

1. Introduction
Elastomers are often filled with high loadings of

relatively rigid particulate materials in order to stiffen
and strengthen them. These effects depend strongly upon
the particle size of the filler and upon the degree of
bonding between the elastomer and the filler (l). Wwhen
the particle size is small, less than about 1 um, even a
moderate degree of interaction between the elastomeric matrix
and the filler seems to be sufficient to produce a surprisingly
high level of reinforcement. When the particle size is rela-
tively large, the matrix seems to be easily detached from the
filler particles at relatively low tensile stresses and the
level of reinforcement is correspondingly low (1).

The tensile stress at which an ela;tic matrix will
become detached from a rigid spherical inclusion is derived

here on simple theoretical grounds. Only low concentrations

of filler are considered, such that the strain fields around

each particle do not interact to a significant degree, and the #

matrix itself is treated as a linearly-elastic material, with

Young's modulus E. Detachment is assumed to start at an

already-debonded region, present initially on the surface of




2

! the particle. It is assumed to take place by growth of this
debonded region when the elastic strain energy thereby re-
leased in the matrix is greater than the energy required for
further debonding. This is a straightforward application of
Griffith's fracture criterion (2). 1It leads to a prediction
of catastrophic debonding when the initially-debonded region
is small in size. Moreover, the amount of strain energy lost
from the system as a result of debonding can be readily eval-
uated from the difference between the strain energy levels
before and after debonding has taken place. 2An estimate can
be made in this way of the additional mechanical hysteresis

due to detachment of the matrix from the filler.

A somewhat similar analysis has recently been put for-

ward, dealing with the conditions for detachment from a spherical

inclusion under a triaxial tension (3). That study differs

Sl IR X

from the present analysis in two important respects. The pro-

cess of detachment was assumed to take place simultaneously at
all points on the spherical surface, rather than progressively

from an initially debonded region. Secondly, the strain energy

released by dilation of the matrix after detachment has taken

place was considered to be wholly expended in the detachment




process itself, in the form of bond fracture energy. In

contrast, the analysis developed here, although rather approx-
imate in nature, treats the debonding process as a continuous
cne, starting from the hypothetical initially-debonded region
on the surface of the inclusion. It leads to the prediction
of both stable and unstable (i.e., catastrophic) modes of
growth of the debond, depending upon the size of the initial
debond relative to the size of the inclusion.

In a final section, other modes of failure are considered.
It is shown that detachment from small inclusions is improbable,
even when the level of adhesion is low and that fracture of the
matrix itself in the vicinity of the inclusion becomes increas-
ingly difficult as the size of the inclusion is reduced. These
conclusions explain, at least in part, the reinforcing action
of small particles,.
2. Theoretical considerations

(a) Critical stress for detachment

A single spherical inclusion within an elastic matrix
is shown schematically in Figure 1. A small circular area omn
the surface of the inclusion is assumed to be debonded from the

matrix initially. Growth of this debonded patch will take place




i when the tensile stress ¢ applied to the specimen at its dis-
i

tant edges reaches a critical value, denoted Oy A relation

for this critical stress is now derived by means of an approx-

imate energy analysis.
For simplicity, the initially-debonded patch is assumed i

to be located on the surface of the inclusion in the direction |

of the applied stress, Figure 1. Other locations would re-

sult in higher values of the critical stress, as will be shown

later , so that this assumption leads to minimum values for

Oy The stress field set up in the material is divided con-

ceptually into two regions, as shown in Figure 1: a far-field

region where the strain energy density U is assumed to be un-

affected by the presence of the debonded area, and a region in

the immediate vicinity of the debonded zone, shown shaded in

Figure 1, within which the strain energy density is assumed to

be effectively zero because the debonded zone cannot transmit

a tensile stress to the matrix. A similar assumption was made

by Rivlin and Thomas in their analysis of an edge crack in a

homogeneous elastic solid (4).

The volume AV of the unstressed region will be given by

AV = k (r sin 6)3 (1)




P T ek L

e

on general dimensional grounds, where rf is the radius of

the circular debonded zone and k is adimensionless quantity
evaluated later. The area A of the debonded zone is
2m? (l-cos 6). The loss AW in elastic strain energy when

the debonded zone increases in area by AA is then given by
oW = U‘agAv)) (_a_e_) aa
20 oA

= (3k/4m (Ur sin 26) Aa (2)
In accordance with Griffith's fracture criterion, it is assumed
that the debonded area will grow if this reduction in stored
strain energy is equal to, or greater than, the energy re-
quired for debonding,

namely GaAA, where Ga is the bond fracture energy per unit of

bonded surface. The criterion for debonding thus becomes:

U 2 471G, /3kr sin 26. (3)
In terms Of the applied tensile stress g, U is given by & /2E
where E is Young's modulus for the composite material. The

applied stress ca necessary to cause debonding is therefore

given by

0,2 = 8m6_E/3kr sin 26. (4)
In order to obtain a value for the numerical quantity

k, this result is now specialized to the case when § is small




T

6

and the debonded zone becomes a small circular region of radius
a = rf. Mossakovskii and Rybka have treated the éorraspcndi.ng
case of the detachment of an elastic half-space from a rigid
plate when a circular debond of radius a is located at the
interface (5). They deduced that

oa = ZTG‘E/:M. (s)

On comparing equations (4) and (5), taking 6§ to be small, a value
of 2 is obtained for the numerical parameter k.

It is clear from equation (4) that the tensile stress
for detachment is quite 1large both when the radius rf@ of the
initial debond is small, and also when the debonded region is
large, when 8 ~ 90°. It passes through a minimum value when
8 = 45°, i.e., for inclusions which are debonded initially
over a substantial fraction of their surface. This minimum
value of % is given by

oazmin = 41TGaE/3r. (6)

It is similar in magnitude to the stress causing detachment
of an elastic material from a rigid substrate, initiated by
a debond of radius xr, equation (5). It is also similar to

that deduced for detachment from a spherical inclusion of

radius r under a triaxial tension o, (3),

z =
at BGaE/ 3r.
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It represents (in the present instance) the lowest stress at
which detachment would occur under the most favorable circum-
stances, i.e., when a relatively large debond is present at
the inclusion surface initially,and it is located in a par-
ticularly favorable way with respect to the direction of the
applied tension. Under all other circumstances the debonding
stregs will be higher than that given by equation (6). Indeed,
when the size of the initial debond, represented by the angle
8, is small, it is clear from equation (4) that debonding will
take place in a catastrophic way because the stress required
to maintain the debonding process decreases as € inﬁreases.
Once the applied stress and stored elastic energy reach their
critical levels, then the debond will grow abruptly until
sin 268 attains its original value again. If 6 is small to
start with, then debonding will take place until 8 ~ 90, i.e.,
until debonding is virtually complete.
(b) Energy dissipated in debonding

The loss of stored elastic energy as a result of this
abrupt debonding can be evaluated by means of equation (1l).
The unstressed zone will increase from its small initial size

to a final volume of approximately 2r’, when k is given the

Cad PP 3N



value of 2 deduced earlier. Thus, the decrease in strain
energy is approximately 2Ur®. If it is assumed, as seems
likely, that detachment occurs simultaneously at both
poles of the inclusion, then the decrease in strain energy
for each inclusion becomes 4Ur®. The number n of inclusions
per unit volume of the filled material is given by
n = 3c/4nrd
where ¢ is the volume fraction of the composite material
occupied by inclusions. Thus, the total reduction in
strain energy density caused by debonding is obtained as
au/u, = 3c/m, (7)
where U° denotes the input strain energy up to the point

of detachment. The ratio AU/UO, referred to hereafter as

the mechanical hysteresis ratio H, is therefore predicted
to be independent of particle size and proportional to the
volume fraction ¢ of particles in the composite.

It should be noted that eqguation (7) is based upon two
special assumptions, which will only hold under quite restricted
circumstances. The first is that the stress fields around
each particle are assumed not to interact significantly. This
implies that the particles are separated by distances comparable

to, or greater than, their diameters, and this in turn implies




that their volume fraction ¢ is small, not more than about

10 per cent. The second assumption is that small debonded
areas are present initially on the particle surface, and that
they are favorably located with respect to the applied stress
direction. This implies that there are, in fact, many small
debonded areas per particle. Those suitably positioned with
respect to the applied stress will presumably act as nuclei

for the detachment process.
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Other modes of failure

The mechanism of detachment treated in the preceding
section is likely to be valid only for relatively large
particles, weakly bonded to the matrix, and different
mechanisms of detachment will operate under other cir-
cumstances. For example, when the level of adhesion
between the matrix and the inclusion is sufficiently
high, the elastomeric matrix will undergo cavitation
in the vicinity of the particle (6). In this case, the
matrix does not detach from the particle directly, but
instead it undergoes internal rupture near the particle
surface, nucleated by a small precursor void present within
the elastomeric matrix. The void is torn open by triaxial
tensions generated in the neighborhood of the particle.
The condition for this mode of failure to occur is that
the applied tensile stress must reach a critical value,
given by (6, 7)

ag = (E + P) /2, (8)
where P denotes the ambient pressure (usually atmospheric
pressure and hence small in comparison with E).

On comparing the minimum value of the critical stress
for detachment, equation (6), with the predictions of
equation (8) for the cavitation stress Ogr i+ can be seen
that detachment will not take place if __

Gy, / r > 3E/16 7 (9)
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because the detachment stress Oa then exceeds the stress O
for cavitation. When E is giv;; a value of 3 MPa, characzzi-
istic of rubbery solids, and G, a value of 10 J/mz, rep-
resenting a relatively weakly:;snded interface (8), then
equation (9) predicts that detachment will not take place

for particles having a diameter of less than about 0.1 mm.
Instead, the matrix will abruptly tear open near the particle
at the applied stress given by equation (8).

Aléhough this failure process is quite different from
the detachment mechanism considered earlier, nevertheless
the mechanical hysteresis ratio H will still be given by
equation (7), to a good approximation , because the
assumptions on which that equation was based are still
valid. The cavities form abruptly and grow to a size that
relieves the high stresses set up in the vicinity of the
particle surface in the same way as the abrupt growth of
a debond on the particle surface. 1Indeed, the cavities
often tear towards the particle surface as they develop
and bring about debonding in this way (6). The initial
failure stress, however, is quite different and depends
only upon Young's modulus E, equation (8).

If the precursor voids within the elastomeric matrix are
even smaller, less than about 100 nm in diameter, then the
critical applied stress Op will no longer be given by equa-

tion (8). 1Instead, an additional constraint on the expansion

of a void becomes significant, arising from its own surface
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energy. This additional term, given by 2y/a where y j
denotes the surface energy of the matrix and a denotes
the radius of the void, becomes large when the radius a
is small. Thus, the applied stress must overcome both

the elastic resistance to expansion, represented by E in

equation (8), and a large surface energy contribution as |
well (9).
From simple dimensional considerations it is clear .
that no large precursor voids can be located within the
immediate vicinity of a small inclusion. 1Indeed, it seems
reasonable to assume that the largest void that can exist
near to an inclusion will be about one order of magnitude
smaller in size than the inclusion itself. Thus} cavitation

stresses for particles of less than about 1 um in diameter

are likely to be considerably larger than those predicted

by equation (8), due to the large surface energy contribu-

tion in these cases. Moreover, the smaller the particle,
the larger is the stress required to create a cavity in its
vicinity by tearing open a precursor void.

It can be concluded that an elastomeric matrix will

not detach from small particules, less than about 0.1 mm in

size, by debonding, even when the level of adhesion is low.

Furthermore, the process of local cavitation in the matrix,

leading to the same effects as detachment, will become

increasingly difficult as the particle size is further
reduced. Rigid inclusions of less than about 1 um in
size are likely to be effectively bonded to the matrix in
all circumstances and thus act as reinforcing fillers, in

accord with experience (1).
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Figure 1. Sketch of a single inclusion showing
debonded area and associated volume
AV effectively free from stress.
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